Recommendations for a Research Incentives and Rewards Program on the Norman Campus

Guiding Principles

In addition to a program for faculty research awards, a companion program of faculty scholarly accomplishment incentives can help increase research and other creative productivity by providing predictable incentives based on accomplishing very specific benchmarks. In effect, if a faculty member accomplishes research goal “X” then he or she can rely on receiving incentive “Y.” This kind of framework will restore some measure of “merit” to university incentives for faculty (which increasingly have emphasized an “across-the-board” approach) and also will counter-balance the lack of annual E&G salary increases.

Faculty can be incentivized in two ways: (1) additional pay and (2) additional resources. Based on discussions through Aspire 2020, different faculty have differing preferences between these two kinds of incentives. Consequently, rather than prescribe one or the other, the choice of taking an incentive as additional pay or as additional resources (or some combination of the two) should be left up to each faculty member eligible for an incentive.

The following principles should guide the creation of a formal Research Incentives and Rewards Program for the Norman Campus.

Timely: Another in a series of across-the-board raises underlines the point that merit has become irrelevant in faculty rewards. For purposes of tenure and promotion, OU has minimal merit thresholds, but the university has no mechanism to incentivize faculty to exceed those thresholds, which is a significant barrier to transforming OU’s scholarly metrics (including external funding). Launching a merit-based incentives program now would have maximal effect on faculty morale and future activities.

Predictable: In addition to recognizing faculty accomplishments, we also want to motivate future actions (that is, more grant proposals, more fellowship applications, more publications, more effort in scholarly endeavors). To accomplish the latter, an incentives program must be multi-year (rather than a one-off or a one-year pilot) and must be predictable. Faculty must have a high level of confidence that a specific accomplishment (such as winning a grant or a prestigious national fellowship, which often takes more than one year to accomplish) will result in a particular reward (unlike annual evaluations that may or may not be followed by a salary increase). To motivate desired behaviors, action A unequivocally should result in reward B.

Meaningful: The reward should be of a magnitude to make a decided difference in a faculty member’s economic life. We want faculty to make qualitative improvements in their research and scholarly effort.
Thus, we need to offer incentives that would make a qualitative difference in how faculty are motivated. Incremental incentives are not transformative.

Sustainable: Any incentive program requires an up-front investment prior to any downstream return on that investment. Over multiple years, though, a faculty incentive program should result in increases in external funding and prestigious scholarly accomplishments that are of a greater value to the university (monetarily and in terms of reputation) than the financial costs of the program itself. Thus, from the point of view of external funding, the costs of incentivizing faculty who win sponsored awards should be more than offset by the additional IDC generated from the expected increase in grant proposals. Similarly, incentivizing faculty to apply for prestigious fellowships and win scholarly prizes or designations (such as national academy membership) should be less expensive than the cost of hiring new faculty who already have won similar awards, prizes, or designations.

Programs Related to External Funding

Annual Bonuses: Faculty members will be given yearly bonuses equivalent to 3% of the IDC each is credited with generating (based on internal routing credit) from annual research expenditures. We will only award bonuses to faculty who generate $33,333 or more of IDC in a given fiscal year (which would be a bonus of $1000) – so that faculty have a threshold to aim at (essentially, research expenditures of at least $66,666 at full IDC annually) and we aren’t awarding bonuses of a few hundred or even tens of dollars for smaller levels of annual expenditures. On this plan, a faculty member with $1m in annual expenditures at full IDC could earn a bonus of $15K. Assuming total IDC generation of $19m annually, the cost of this incentive program would not exceed $570K each year – and given the minimum threshold, would probably come out at around $500K or less. The goals of such a reward would be (1) to motivate faculty who have not sought external funding in the past to do so and (2) to motivate funded faculty to enlarge their grant portfolios. This incentive would become sustainable if it resulted in an increase of $1.3m in research expenditures annually at full IDC.

Regular investigator-initiated awards (NIH R01 awards and the regular NSF faculty research awards): $10,000 and Center and larger, multi-investigator grants (NIH P01, P20, P30 and U awards, NSF IGERT and Center awards): $50,000. Currently, the Norman campus has around 140 regular NSF awards, 5 center awards (construed generously), and 20 NIH R01s. That would translate as around $1.85M in incentives. Factoring in equivalent DOE, DOD, NOAA, and other grants, we could estimate an overall cost of $2M in incentives for our current portfolio. That cost, though, would be spread out over a period of years. Assuming that the average length of each grant is 3 years, this would mean an overall cost of around $667K per year for a funded research incentive program. Of course, we hope these incentives would increase number of proposals and awards, so the cost of the incentive program would grow as our funded portfolio grows. An incentive program of this sort can be funded and implemented unilaterally by VPR.

Faculty also can be encouraged to write their grant budgets in ways that fund their own incentives. Faculty already include summer salaries in grant budgets as a way of increasing their pay. The university could provide additional opportunities for self-funded incentives:

Salary replacement: Norman campus faculty tend to budget academic year salary replacement (where that is allowed by the funding agency) only up to the level required by their departments for teaching release. In many cases, faculty could justify budgeting greater percentages of their academic year salaries on grants, but do not do so because in most cases they have no access to salary release funds (which are controlled by chairs, directors, and deans). In contrast, most academic health sciences centers
(including OUHSC) make a percentage of salary release available to faculty as a standard part of their overall salary packages. The Norman campus could institute a similar program through which 50% of any academic year salary replacement generated by a faculty member above and beyond that required for course release would be made available to the faculty member either as supplemental pay or as unrestricted research funds. While this arrangement would appear to reduce the control of chairs, directors, and deans over salary replacement funds, in fact it likely will incentivize faculty to increase the amount of those funds over the amounts necessary for teaching release and so result in an overall increase of salary replacement money available to chairs, directors, and deans. This incentive would require a general policy formulated at the Provost’s level to be available to faculty as a standard option, but is currently used on an ad hoc basis in several colleges.

13th month: Some universities use various means (including defining the faculty work week as 60 hours rather than 40 hours and calculating base salaries for grants on a different basis such as including salary from a professional practice plan) to allow faculty to pay themselves from grants at higher rates. These arrangements would require policy changes at the regents’ level and careful attention to compliance issues as well as state law. However, if done appropriately, such arrangements are university-budget neutral and allow faculty to use grant funding to raise their academic rates of pay. Design and implementation will require significant intra-university discussion and coordination.

Postdoc Matching Program: A number of Aspire 2020 participants viewed institutional support for postdocs as a key incentive for research productivity. VPR could offer to pay half the cost of any postdoc supported by a faculty member on external funding (provided the external funding has full, on-campus IDC). That offer could be made conditional on being written into grant proposal budgets as a cost match, which would allow us to track our potential financial exposure and limit the program if it became too expensive. Each postdoc would cost VPR approximately $35K (including fringe) and the program should include an upper limit on postdoc salary of $60K.

Programs Related to Prestigious Scholarly/Creative Accomplishments

Book Awards: Any faculty member whose peer-reviewed scholarly book or monograph wins an award from a national professional organization (American Historical Association, MLA, etc.) will be given a $5000 incentive. Based on a review of our Highlights publication, at most there might be 5 such incentives per year for a total cost of $25,000.

Citation Counts: AAU, NRC and other organizations that measure research productivity include the number of times faculty members’ peer-reviewed journal articles are cited among their criteria. While these measures are not perfect and not inclusive of all peer-reviewed journals, they are nonetheless nationally recognized benchmarks of research quality that are used for multiple purposes. Consequently, it is in the university’s best interests to incentivize faculty whose journal articles have the highest number of citations. Each year, VPR could give $1000 each to the OU authors of the top 10 cited articles published within the last five years in the categories of Science Citation, Social Science Citation, and Arts and Humanities Citation (as indexed on Web of Science). This incentive program would cost $30K per year. Obviously, some OU articles would garner incentives in multiple years, but the five-year time limit would phase those articles out so that at most a particular article could generate $5000 in incentives. Each $1000 incentive would be shared among all OU co-authors for a particular article.

Juried Creative, Performance, and Exhibit Awards: Some OU faculty publish creative works in non-peer-reviewed venues while others perform or exhibit rather than publish. As a counter-part to the peer-reviewed scholarly book and monograph award incentive, we could create a $2500 incentive for any
nationally competitive juried award for an OU faculty member's creative publication, performance or exhibit. Unlike the scholarly book awards, it may take several iterations to identify the kinds of juried creative, performance and exhibit awards that we should incentivize. This incentive program could cost approximately $30K per year.

Prestigious Fellowships or Designations: Any faculty member who wins one of the prestigious fellowships or designations (such as national academy membership) listed in the AAU criteria would receive a $5000 bonus in the year in which the award or designation is made. Based on prior history, we are likely to have only five or fewer of these incentives annually, at a cost of $25,000.

Cost: The total annual cost of Scholarly and Creative incentives: $60,000 to $110,000. Essentially, this would be an annual cost that is less expensive than one senior faculty salary. The benefit of the incentive program is in magnifying prestigious scholarly and creative accomplishments across multiple faculty members.
<table>
<thead>
<tr>
<th>Amount</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.00</td>
<td>Prestigious fellowships or scholarships</td>
</tr>
<tr>
<td>$0.00</td>
<td>Salary replacement bonus</td>
</tr>
<tr>
<td>$0.00</td>
<td>One-time bonus for nationally competitive investigator-initiated grants (such as NIH R01, NSF CAREER, and similar research grants)</td>
</tr>
<tr>
<td>$0.00</td>
<td>One-time bonus for nationally competitive center or other awards (such as NIH P30, NSF STC, and ERC)</td>
</tr>
</tbody>
</table>

Menu of Proposed Incentives for Faculty Research and Creative Activity
<table>
<thead>
<tr>
<th>Amount</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$300,000</td>
<td>Exhibit Awards</td>
</tr>
<tr>
<td>$300,000</td>
<td>United Creative Performance and</td>
</tr>
<tr>
<td></td>
<td>Faculty with funded awards</td>
</tr>
<tr>
<td>$1,000</td>
<td>Each</td>
</tr>
<tr>
<td></td>
<td>Honors of Faculty, Faculty bonus</td>
</tr>
<tr>
<td></td>
<td>Humanities, Social Sciences, and</td>
</tr>
<tr>
<td></td>
<td>in ISL Science, Social Science, and</td>
</tr>
<tr>
<td></td>
<td>Faculty with Top Ten Cited Articles</td>
</tr>
<tr>
<td>$1,000</td>
<td>Citation Counts (Great Specialty will)</td>
</tr>
<tr>
<td></td>
<td>be needed with regard to number of</td>
</tr>
<tr>
<td></td>
<td>professional society awards</td>
</tr>
<tr>
<td>$250,000</td>
<td>Professional Society Awards and</td>
</tr>
<tr>
<td></td>
<td>Medals</td>
</tr>
<tr>
<td>$500,000</td>
<td>Given a $5000 salary bonus</td>
</tr>
<tr>
<td></td>
<td>Professional organizations will be</td>
</tr>
<tr>
<td></td>
<td>awards or prizes from national</td>
</tr>
<tr>
<td></td>
<td>Faculty whose books receive</td>
</tr>
<tr>
<td></td>
<td>discretionary funding</td>
</tr>
<tr>
<td>$500,000</td>
<td>Book Awards</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Main Research Areas in Computer Science

- **Theoretical Computer Science and Algorithms**: Cheng, Kim, Dhall, Lakshmivaranah, Radhakrishnan and Thulasiraman
- **Computational Science**: Lakshmivarahan, Dhall and McGovern
- **Telecommunication Networks**: Atiquzzaman, Radhakrishnan and Thulasiraman, Cheng and Dhall
- **Artificial Intelligence and Intelligent Systems**: Hougen, Fagg, McGovern, Trytten.
- **Databases, Data Mining And Knowledge Discovery**: Gruenwald, McGovern and Lakshmivarahan
- **Software Engineering**: Page, Trytten, Gruenwald and Kim
- **Educational Technology**: Page and Trytten
- **Human Computer Interaction**: Weaver
- **Parallel / Distributed Systems and Computing**: Antonio, Lakshmivarahan, Dhall, Thulasiraman, Radhakrisnan and Neeman

Research Topics

- **Theoretical Computer Science and Algorithms**: Cheng, Kim, Dhall, Lakshmivaranah, Radhakrishnan and Thulasiraman
 - Combinatorial Optimization: Thulasiraman
 - Approximation and Meta-Heuristics: Thulasiraman
 - Graph Theory and Algorithms: Thulasiraman, Lakshmivaranah, Radhakrishnan and Dhall
 - Graph Grammars and Picture Theory: Kim
 - Number Theory and Algorithms: Cheng
 - Molecular Computing: Cheng
 - Network Science: Thulasiraman
 - System Level Diagnosis: Thulasiraman
- **Computational Science**: Lakshmivarahan, Dhall and McGovern
 - Scientific Computing: Lakshmivarahan and Dhall
 - Computational Meteorology: Dhall, McGovern and Lakshmivaranah
 - Computational Finance: Dhall and Lakshmivaranah
- **Telecommunication Networks**: Atiquzzaman, Radhakrishnan, Thulasiraman, Cheng and Dhall
 - Broadband Networks: Atiquzzaman, Radhakrishnan and Thulasiraman
 - Communication Protocol Design and Testing: Atiquzzaman, Radhakrishnan and Thulasiraman
 - Cryptogrphy and Network Security: Cheng and Dhall
 - Traffic Engineering and NetWOrk Optimization: Atiquzzaman and Thulasiraman
 - Distributed Diagnosis and Network Management: Thulasiraman
 - QoS Routing: Thulasiraman
 - Topology Abstraction Service for VPNs: Thulairaman
 - Protection and Restoration Mechanisms: Thulasiraman
 - Mobile Computing: Atiquzzaman and Radhakrishnan
Next Generation Internet: Radhkrishnan and Atiquzzaman
Wireless and Satellite Networks: Atiquzzaman and Radhakrishnan
Optical Networks and Network Survivability: Thulasiraman
• Artificial Intelligence and Intelligent Systems: Hougen, Fagg, McGovern, Trytten,
 Artificial Intelligence: Hougen, McGovern
 Autonomous Systems: Hougen and McGovern
 Evolutionary Computing: Hougen
 Imaging and Vision: Trytten and Atiquzzaman
 Machine Learning: Fagg, Hougen and McGovern
 Robotics and Automation: Hougen
• Databases, Data Mining and Knowledge Discovery: Gruenwald, McGovern and
 Lakshmivarahan
 Distributed Databases: Gruenwald
 Data Mining and Knowledge Discovery: Gruenwald, McGovern and Lakshmivarahan
• Software Engineering: Page, Trytten, Gruenwald and Kim
 Formal Methods in Software Engineering: Page
 Functional Programming: Page
 Object Oriented Systems: Gruenwald and Trytten
 Programming Languages: Kim and Page
• Human Computer Interaction: Weaver
 Information Visualization
 Visual Analytics
• Educational Technology: Page and Trytten
 Assessment Technique: Page and Trytten
 Collaborative Learning: Trytten
 Formal Methods in Software Engineering: Page
 Technology Development for Education: Trytten
• Parallel / Distributed Systems and Computing: Antonio, Lakshmivarahan, Dhall, Thulasiraman,
 Radhakrishnan and Neeman
 High Performance Computing: Antonio, Dhall, Lakshmivarahan, Neeman, Thulairaman and
 Radhakrishnan
 Distributed Computing: Radhakrishnan and Thulasiraman
 Integrated Grid Infrastructures: Neeman and Radhakrishnan
 Interconnection Networks: Dhall, Lakshmivarahan and Thulasiraman
 Reconfigurable Computing: Antonio and Dhall
RESEARCH THEMES IN THE DEPARTMENT OF ANTHROPOLOGY
Diane Warren 10/17/2011 updated version

A. Archaeology (Gilman, Lewis, Livingood, Minnis, Randall, Vehik)

B. Sociocultural (Bessire, Dowell, Harris, Hirschfeld, Jervis, Klein, Marshall, Minks, O’Neill, Rambo, Spicer, Swan)

D. Linguistic Anthropology (Foster, Linn, Maudlin, McCarty, O’Neill, Palmer, Sealy)

RESEARCH TOPICS IN EACH THEME

A. Archaeology
- Architecture (Gilman)
- Biodiversity, botany and ethnobotany (Minnis)
- Ceramics (Gilman, Livingood)
- Complex societies (Livingood, Minnis)
- Ecology (Minnis, Vehik)
- GIS and other computer methods (Livingood, Randall)
- Hunter-gatherers (Randall)
- Mobility and sedentism (Gilman, Randall)
- Trade (Vehik)
- Andes (Lewis)
- Mexico (Minnis)
- North America (Gilman, Livingood, Minnis, Randall, Vehik)

B. Sociocultural
- Cultural ecology (Rambo)
- Diversity in higher education (Harris)
- Economic anthropology and political economy (Harris, Hirschfeld, Rambo, Swan)
- Ethnicity, identity and the politics of representation (Klein, Dowell, Harris, O’Neill, Minks, Bessire, Marshall)
- Expressive culture, including visual anthropology, ethnomusicology, performance, and storytelling (Dowell, Swan, O’Neill, Palmer, Marshall, Bessire)
- Gender and sexuality (Dowell, Klein, Harris, Hirschfeld)
- Human rights, indigeneity and sovereignty (Bessire, Dowell)
- Industrialization and development (Harris)
- Jewish studies (Klein)
- Museum anthropology (Swan)
- Religion (Marshall, O’Neill, Swan, Klein, Bessire)
- Violence and trauma (Bessire, Jervis)
- Africa (Harris)
Brazil (Klein)
- Latin America (Bessire, Hirschfeld, Klein)
- Native North America (Dowell, Foster, Marshall, Mauldin, McCarty, O'Neill, Palmer, Sealy, Swan)
- Oceania and Papua New Guinea (Rambo)
- United States (Harris)

C. Health and Human Biology
- African diaspora (Rankin-Hill)
- Behavioral ecology (Anderson)
- Bioarchaeology and skeletal biology (Lewis, Rankin-Hill, Warren)
- Demography (Anderson)
- HIV/AIDS (Anderson)
- Human evolution (Lewis)
- Human biological variation (Lewis, Rankin-Hill, Warren)
- Life history theory, human development, parenthood, and aging (Anderson, Jervis, Spicer)
- Medical anthropology (Hirschfeld, Jervis, Rankin-Hill, Spicer, Bessire)
- Genetics, molecular anthropology, and ancient DNA (Lewis, Warren)
- Psychiatric anthropology (Jervis)
- Social welfare policy (Hirschfeld, Spicer)
- Latin America and Cuba (Hirschfeld, Rankin-Hill)
- Native North America (Jervis, Lewis, Rankin-Hill, Spicer, Warren)
- South Africa (Anderson)
- South America (Hirschfeld, Lewis)

D. Linguistic Anthropology
- American Indian languages including language revitalization (Linn, Foster, Mauldin, McCarty, O'Neill, Palmer, Sealy)
- Cherokee language (Foster)
- Choctaw (Sealy)
- Creek and Seminole (Mauldin, McCarty)
- Kiowa (Palmer)
- Language description (Linn, O'Neill, Palmer)
- Language and culture (O'Neill, Palmer, Linn, Minks, Bessire)
RESEARCH THEMES IN THE DEPARTMENT OF HISTORY

A. Environmental History (Evans, Magnusson)

B. Cultural and Intellectual History (Anderson, Cane, Canoy, Chappell, Cline, Davis, Faison, Folsom, Griswold, Holguín, Hurtado, Kelly, Olberding, Rugeley, Schapkow, Shepkaru, Stockdale, Stillman, Ward, Wickersham, Wrobel, Yarbrough)

C. Race, Ethnicity, and Identity (Anderson, Chappell, Davis, Folsom, Keppel, Levenson, Metcalf, Piker, Yarbrough)

D. Women's and Gender History (Davis, Faison, Griswold, Hurtado, Kelly,

E. History of War, Revolution and Diplomacy (Anderson, Bradford, Cane, Folsom, Rugeley,

F. Legal and Constitutional Heritage

RESEARCH TOPICS IN EACH THEME

A. Environmental History
 - US West and borderlands (Evans)
 - agriculture (Evans, Magnusson)
 - water use (Evans, Magnusson)
 - engineering and technology (Evans, Magnusson)
 - European (Magnusson)

B. Cultural and Intellectual History
 - US West and borderlands (Anderson,
 - media (Cane, Keppel
 - authoritarianism and culture (Cane, Canoy, Stockdale
 - crime and policing (Canoy, Davis,
 - religion (Chappell, Cline, Davis,
 - art history (Cline,
 - food (Davis)

C. Race, Ethnicity, and Identity
 - US West and borderlands (Anderson, Hurtado, Metcalf, Yarbrough)
 - US colonial (Piker,
 - citizenship and civil rights (Chappell, Faison, Keppel,

D. Women's and Gender History
 - legal (Davis,
- labor (Faison,)

E. History of War, Revolution, and Diplomacy
- Ancient world (Bradford
- US West (Anderson,
- Latin America (Cane, Folsom, Rugeley
- WWII (Canoy,

F. Legal and Constitutional Heritage
- human rights (Chappell,
- US civil rights movement (Chappell,
CARD Decision Matrix for Engagement

The University of Oklahoma Center for Applied Research and Development (CARD) was created as part of an initiative to strengthen and expand OU’s work in the applied research and development areas. CARD is unique in that it enables OU to provide access to the entire portfolio of Norman campus research capabilities and resources under a single organization and with a single organizational interface. CARD works with industry as well as federal mission agencies to solve specific industry and mission problems using OU’s highly-qualified pool of researchers and experts.

In order to ensure that CARD provides the best value for the OU community, a selection matrix was created to help guide the decision for project engagement within CARD. This matrix is not scored, but rather used as a tool to determine if a project or opportunity is an appropriate fit for CARD and the OU organizations that may be involved. It is intended to ensure that the project review process is thorough and that there is a consistent foundation for project consideration and discussion.

The CARD decision matrix for project engagement is intended to reinforce the specific role and mission of the center. Many types of projects and opportunities do not fall within the scope of CARD and do not require the use of the decision matrix. For example, there are specific types of projects and programs that fall within the scope of the College of Continuing Education (CCE) and these types of programs will not be considered for CARD. Examples include those that involve personnel services and placement, outreach efforts such as education and training, and other types of projects that do not involve any type of applied research and development.

Please feel free to contact James Grimsley (jgrimsley@ou.edu) or the VPR office if you have any questions or need additional information about CARD or the role of CARD at OU.
CARD Decision Matrix for Engagement

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the project involve applied (not basic or inquiry-driven) research or development that seeks to perform specific tasks requested by the funding organization and/or has defined deliverables?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the project have publication restrictions?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the project funded by a mission agency or office?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the project funded by a contract or procurement vehicle rather than a grant or cooperative agreement?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the project involve teaming or collaboration with a non-academic entity?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are there specific TRL or MRL requirements or goals for the research?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the funding organization retain the rights to intellectual property generated during the course of the project and/or could the project be considered a "work for hire"?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the project have explicitly-stated manufacturing and production plans, goals or requirements?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the project involve continued development and expansion of intellectual property developed outside of OU?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the project involve non-faculty researchers as principal investigators or project lead researchers?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are there specific requirements for participation by an industry partner as a contractual part of the research?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the funding or sponsor organization require an unlimited use license or retain other rights to the use of the research results or products?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the project have performance or delivery schedules that are based on calendar years (such as monthly deliverables) and difficult to reconcile or align with academic calendars?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Guidance and explanation:

1. Applied R&D projects typically have well-defined project milestones, project reviews, and explicit project deliverables. Basic or inquiry-driven research projects, on the other hand, are normally limited to laboratory demonstrations and research reports with fewer "hard deliverables". Applied research and development projects will typically have detailed requirements for visibility into project tracking and control (schedules, decision gates, detailed performance reviews, etc).

2. Publication restrictions can sometimes distinguish basic research from applied research and development. In terms of DoD-funded projects, this is typically a distinction between projects funded by the sciences offices (and DARPA, etc) and those funded by the mission agencies. The mission agencies typically include publication restrictions on those projects that are considered applied R&D.

3. Mission agencies normally fund applied R&D projects whereas basic research is funded by agencies such as NSF, NIH, DARPA, ONR, AFOSR and I-ARPA. DoD research labs (NRL, AFRL, ARL, etc.) projects can be either basic or applied research efforts.

4. The funding vehicle for a project is typically distinctly different between basic and applied research and development projects. Basic and inquiry-driven research and development projects are typically funded by grants or cooperative agreements. In contrast, applied research and development projects are typically funded by contracts or procurement contract vehicles.

5. Teaming or partnering with non-academic entities and partners usually involves complex IP-related issues and tend to be applied rather than basic research. If the non-academic partner is required to develop software, hardware or systems (or modify existing systems) that will be delivered to the university’s funding sponsor, then it is likely that the project is an applied research and development project rather than basic research.

6. If technology readiness levels (TRL) or manufacturing readiness levels (MRL) are defined in a statement of work or contract, it is likely that the project is applied rather than basic research. This is especially true if there are TRL or MRL targets or objectives stated for final project results.

7. If the intellectual property rights are retained by the funding agency or organization, then it is likely that the project is an applied research and development project rather than a basic or inquiry-driven research project. For some research and development projects (especially consulting-type work), the project might be considered a "work for hire" where the funding organization retains the rights to the intellectual property or copyright similar to an employer's ownership of IP or copyright.

8. Projects that have manufacturing or production plans or goals stated will tend to be applied rather than basic research.

University of Oklahoma internal use only
9. If a project involves the continued development of technology that originates outside of the university, then it is likely to be an applied research and development effort. Typically, this type of project will begin at a TRL that is at the upper end (or higher) of what is typically seen with basic or inquiry-driven research projects. This type of project may also involve complex IP issues.

10. If a project involves non-faculty researchers as principal investigators or project leads, then it is likely that the project is more applied than basic research.

11. If there are specific contractual requirements for an industry partner or collaborator, then it is likely that a project is applied rather than basic research. These projects may also involve complex IP issues.

12. If the sponsoring or funding organization requires unlimited use licenses or otherwise retains rights to the results of the research or project, then it is likely that the project is an applied research and development effort rather than basic research. Applied research projects funded by the federal government typically contain unlimited use or unlimited license requirements.

13. Projects that contain schedule or deliverable requirements that are difficult to align with academic calendars tend to be applied research and development rather than basic research. Examples include projects with requirements for monthly status reports or projects that have program reviews that do not align with academic calendars or academic semester appointments for university personnel (for example, projects where graduate researchers may start on the project in mid-semester).
Policy on Internal Consulting
Center for Applied Research and Development
University of Oklahoma

6 December 2011

Per the University’s Outside Employment and Extra Compensation Policy for the Norman Campus (Section 5.7 in Faculty Handbook), certain faculty members and professional staff may engage in professional activities (e.g., teaching, consulting) for extra remuneration (from within the University, or from outside sources, or in any combination of the two) up to a maximum of 25% of their full-time professional effort.

On certain projects for which money is provided via grants or contracts from external sources (e.g., private companies, foreign governments) to the University’s Center for Applied Research and Development (CARD), it may be advantageous to engage faculty and professional staff as consultants on an in-load basis at a set rate of pay per day. This daily rate, which may differ from the individuals’ base salary and is negotiated as part of the grant or contract preparation, is remunerated via a supplemental pay through the University’s Human Resources/Payroll system. The project must be considered appropriate by CARD for in-load consulting and approved for such status by the Project Director/Principal Investigator as well as the Vice President for Research.

Any individual planning to receive compensation via the in-load consulting mechanism must submit an updated “Report and Approval of Proposed Outside Employment and Extra-Compensation Assignments Within the University” form (see http://www.ou.edu/provost/pronew/content/External-Memo-Form.pdf) to the Provost’s Office. No compensation will be made to individuals via the in-load consulting mechanism without this submission, and such activities are subject to all other provisions in the Faculty Handbook, including, especially, obtaining appropriate permission from departmental and college administrators (Section 5.7) and abiding by University conflict of interest policy (Section 5.10). Finally, all in-load consulting participants should be aware of possible tax implications associated with such funding.

Any exceptions to this policy must be approved by the Senior Vice President and Provost, and by the Vice President for Research.